Kevin Garnett - NBA

Rabu, 21 Maret 2018

Aplikasi Getaran dan Gelombang dalam teknologi(Sonikasi)

Sonikasi

Sonikasi adalah suatu teknologi yang memanfaatkan gelombang ultrasonik. Ultrasonik adalah suara atau getaran dengan frekuensi yang terlalu tinggi untuk bisa didengar oleh manusia, yaitu kira-kira di atas 20 kHz. Gelombang ultrasonik dapat merambat dalam medium padat, cair, dan gas. Proses sonikasi ini mengubah sinyal listrik menjadi getaran fisik yang dapat diarahkan untuk suatu bahan dengan menggunakan alat yang bernama sonikator. Sonikasi ini biasanya dilakukan untuk memecah senyawa atau sel untuk pemeriksaan lebih lanjut. Getaran ini memiliki efek yang sangat kuat pada larutan, menyebabkan pecahnya molekul dan putusnya sel. 
Bagian utama dari perangkat sonikasi adalah generator listrik ultrasonik. Perangkat ini membuat sinyal (biasanya sekitar 20 kHz) yang berkekuatan ke transduser. Transduser ini mengubah sinyal listrik dengan menggunakan kristal piezoelektrik, atau kristal yang merespon langsung ke listrik dengan menciptakan getaran mekanis dan kemudian dikeluarkan melewati probeProbe sonikasi mengirimkan getaran ke larutan yang disonikasi. Probe ini akan bergerak seiring dengan getaran dan mentransmisikan ke dalam larutan. Probe bergerak naik dan turun pada tingkat kecepatan yang tinggi, meskipun amplitudo dapat dikontrol dan dipilih berdasarkan kualitas larutan yang disonikasi. Gerakan cepat probe menimbulkan efek yang disebut kavitasi. Rangkaian alat sonikasi dapat dilihat pada Gambar I.

Gambar I. Rangkaian Alat Sonikasi

Dalam hal kinetika kimia, ultrasonik dapat meningkatkan kereaktifan kimia pada suatu sistem yang secara efektif bertindak sebagai katalis untuk lebih mereaktifkan atom – atom dan molekul dalam sistem. Pada reaksi yang menggunakan bahan padat, ultrasonik ini berfungsi untuk memecah padatan dari energi yang ditimbulkan akibat runtuhnya kavitasi. Dampaknya ialah luas permukaan padatan lebih besar sehingga laju reaksi meningkat (Suslick, 1989). Semakin lama waktu sonikasi, ukuran partikel cenderung lebih homogen dan mengecil yang akhirnya menuju ukuran nanopartikel yang stabil serta penggumpalan pun semakin berkurang. Hal ini disebabkan karena gelombang kejut pada metode sonikasi dapat memisahkan penggumpalan partikel (agglomeration) dan terjadi dispersi sempurna dengan penambahan surfaktan sebagai penstabil. 
Daya ultrasonik meningkatkan perubahan kimia dan fisik dalam media cair melalui generasi dan pecah dari gelembung kavitasi. Seperti ultrasonik, gelombang suara disebarkan melalui serangkaian kompresi dan penghalusan gelombang diinduksi dalam molekul medium yang dilewatinya. Pada daya yang cukup tinggi siklus penghalusan dapat melebihi kekuatan menarik dari molekul cairan dan kavitasi gelembung akan terbentuk. Gelembung tersebut tumbuh dengan proses yang dikenal sebagai difusi yang dikoreksi yaitu sejumlah kecil uap (atau gas) dari media memasuki gelembung selama fase ekspansi dan tidak sepenuhnya dikeluarkan selama kompresi. Gelembung berkembang selama periode beberapa siklus untuk ukuran kesetimbangan untuk frekuensi tertentu digunakan. Ini adalah fenomena gelembung ketika pecah dalam siklus kompresi yang menghasilkan energi untuk efek kimia dan mekanik (Gambar II). Pecahnya gelembung kavitasi merupakan fenomena luar biasa yang disebabkan oleh kekuatan suara. Dalam sistem cair pada frekuensi ultrasonik 20kHz setiap pecahnya gelembung kavitasi bertindak sebagai lokal "hotspot" menghasilkan suhu sekitar 4.000 K dan tekanan lebih dari 1000 atmosfer. 

Gambar II. Generasi Acoustic Cavitation
 

Menurut Gogate berkaitan dengan reaksi kimia, kavitasi dapat mempengaruhi hal berikut:
a. Mengurangi waktu reaksi
b. Meningkatkan yield dalam reaksi kimia
c. Mengurangi ”force” suhu dan tekanan
d. Mengurangi periode induksi dan reaksi yang diinginkan
e. Meningkatkan selektivitas
f. Membangkitkan radikal bebas        
 
Sebagai tambahan terhadap timbulnya kondisi-kondisi ekstrem di dalam gelembung juga dihasilkan efek mekanik seperti terjadinya collaps gelembung yang sangat cepat. Hal ini juga sangat penting dalam bidang sintesis dan termasuk juga degassing yang sangat cepat dari kavitasi cairan serta dalam hal pembentukan kristal yang cepat. 

Mason, T.J. 2014. Introduction to Sonochemistry. http://www.sonochemistry.info/introdution.htm/(diakses pada tanggal 14 Agustus 2014).   
Suslick Kenneth S. 1994. “The Chemistry of Ultrasound.” Encyclopedia Britannica: Chicago, pp 138-155.

aplikasi getaran dan gelombang dalam teknolog(Tbersih Ultrasonik)



Pengertian Ultrasonic Cleaner ( Pembersih Ultrasonik )

Ultrasonic Cleaning atau ultrasonic cleaner adalah alat pembersih yang menggunakan gelombang ultrasonik (biasanya 20 -400Khz)  dan cairan pembersih khusus (minimal aquadest ) digunakan untuk membersihkan bagian alat atau glassware .
Gelombang Ultrasonik dapat digunakan dengan hanya menggunakan air biasa, tapi penambahan solvent khusus akan membantu membuat dampak lebih baik.
Proses pembersihan biasanya berlangsung 3 sampai 6 menit.
Dalam perkembangannya alat ini juga sekarang digunakan untuk melarutkan sample.
Alat ini cocok juga digunakan untuk membersihkan : Kacamata, perhiasan, peralatan kedokteran gigi, printer head, sisir, peralatan tatto, gigi palsu, arloji, dan lain sebagainya.

Karakteristik Proses Ultrasonic Cleaner

Pembersihan Ultrasonik menggunakan proses gelembung kavitasi yang diinduksi oleh tekanan frekwensi tinggi ( suara ) yang mengagitasi cairan.
Proses Agitasi menghasilkan tekanan besar pada bahan bahan yang melekat pada sampel seperti logam, plastik, gelas, karet atauu keramik. Tekanan ini juga masuk ke lubang lubang atau bagian terdalam dari sample.
Tujuan utama adalah memindahkan atau membersihkan segala kontaminasi pada sample padat.
Air atau cairan pembersih lainnya dapat digunakan tergantung dari jenis kontaminan dan bahan yang akan disonifikasi. Kontaminan dapat berupa debu, minyak, pigmen, karat, lemak, ganggang, jamur, bakteri, pengapuran , senyawa polishing, flux agent, sidik jari, jelaga lilin, residu khamir, cairan biologi seperti darah dan lain lain.
Pembersihan Ultrasonic dapat digunakan untuk berbagai ukuran, jenis dan material alat bantu kerja. Dan tidak perlu memisahkan bagian bagian pada saat pembersihan.
Sample tidak boleh diletakkan dibagian bawah alat selama proses pembersiahan, karena akan mencegah proses cavitasi pada sampel yang tidak terkena dengan air. Karena itu dibutuhkan rak atau keranjang untuk menahan object diatas bagian bawah.

Frekuensi Ultrasonic Cleaner

Saat ini kita bisa mendapat sistem ultrasonik dengan frekwensi antara 20 sampai 950 KHz, yang dapat dipilih berdasarkan pekerjaan yang akan digunakan, jenis kontaminan yang akan dibersihkan dan tingkat kebersihan yang akan dicapai.
Kenyataannya, kebanyakan sistem saat ini mempunyai lebih dari satu frequensi ultrasonik. Alat tersebut mungkin akan menggunakan 40/70/170 untuk pembersihan secara bertahap
Frekwensi umum yang bisa digunakan adalah 20-40 untuk pembersihan berat pada peralatan seperti mesin blok logam berat, tanah yang sangat berminyak .
frekwensi 4- -70 kHz digunakan untuk pembersihan umum dari bagian optik mesin , sangat baik untuk membersihkan partikel kecil.
Frekwensi 70-200 kHz digunakan untuk pembersihan ringan secara ultra dari optik, semikonduktor, disk drive dl

source:https://digital-meter-indonesia.com/ultrasonic-cleaner-pembersih-ultrasonik/

TERAPI ULTRA SONIK


Terapi ultrasound adalah metode pengobatan yang menggunakan teknologi ultrasound atau gelombang suara untuk merangsang jaringan tubuh yang mengalami kerusakan. Walaupun telah lama digunakan di bidang kedokteran untuk berbagai tujuan, teknologi ultrasound lebih dikenal sebagai alat pemeriksaan daripada sebagai alat terapi. Salah satu keuntungan terapeutik dari ultrasound yang belum terlalu dikenal adalah pengobatan cedera otot. Oleh karena itu, terapi ultrasound sering digunakan dalam pengobatan muskuloskeletal dan cedera akibat olahraga.
Keberhasilan penggunaan teknologi ultrasound sebagai alat terapi bergantung pada kemampuannya untuk merangsang jaringan yang ada di bawah kulit dengan menggunakan gelombang suara frekuensi tinggi, mulai dari 800.000 Hz – 2.000.000 Hz. Efek penyembuhan dari ultrasound pertama ditemukan pada sekitar tahun 1940. Awalnya, terapi ini hanya digunakan oleh terapis fisik dan okupasi. Namun, saat ini penggunaan terapi ultrasound telah menyebar ke cabang ilmu kedokteran lainnya.

Siapa yang Perlu Menjalani Terapi Ultrasound dan Hasil yang Diharapkan

Saat ini, terapi ultrasound lebih banyak digunakan dalam pengobatan cedera muskuloskeletal. Pasien yang dapat memanfaatkan teknologi ultrasound sebagai terapi muskuloskeletal adalah mereka yang menderita penyakit berikut:
  • Plantar fasciitis (peradangan pada fascia plantar di tumit)
  • Siku tenis
  • Nyeri pada bagian bawah punggung
  • Penyakit temporomandibular
  • Ligamen yang terkilir
  • Otot yang tegang
  • Tendonitis (peradangan tendon)
  • Peradangan sendi
  • Metatarsalgia (peradangan sendi metatarsal di telapak kaki)
  • Iritasi sendi facet
  • Sindrom tabrakan (impingement syndrome)
  • Bursitis (peradangan bursa/kantung cairan sendi)
  • Osteoartritis (pengapuran sendi)
  • Jaringan luka
  • Artritis reumatoid
Namun, tergantung pada cara dan tingkat penggunaan terapi ultrasound, terapi ini juga dapat digunakan untuk menangani penyakit yang serius dan kronis seperti kanker. Jenis metode terapi ultrasound antara lain adalah:
  • Lithotripsi (untuk menghancurkan batu di saluran kemih)
  • Terapi kanker
  • Pemberian obat tepat sasaran dengan ultrasound
  • Ultrasound Intensitas Tinggi (High Intensity Focused Ultrasound/HIFU)
  • Pemberian obat dengan ultrasound trans-dermal
  • Penghentian pendarahan (hemostasis) dengan ultrasound
  • Trombolisis dengan bantuan ultrasound
Setelah dipancarkan pada bagian tubuh yang membutuhkan pengobatan, teknologi ultrasound akan menyebabkan dua efek utama: termal dan non-termal. Efek termal disebabkan oleh penyerapan gelombang suara ke jaringan halus tubuh, sedangkan efek non-termal disebabkan oleh microstreaming, streaming akustik, dan kavitasi, atau akibat bergetarnya jaringan yang menyebabkan terbentuknya gelembung mikroskopis.

Cara Kerja Terapi Ultrasound

Terapi ultrasound memiliki banyak tingkat, tergantung pada frekuensi dan intensitas dari suara yang digunakan. Tingkat keragaman yang tinggi ini sangat menguntungkan untuk alat terapeutik karena terapis dapat menyesuaikan intensitas terapi agar sesuai dengan penyakit yang ditangani. Namun pada dasarnya terapi ultrasound bekerja dengan menggunakan gelombang suara yang ketika dipancarkan pada bagian tertentu tubuh dapat meningkatkan suhu dari jaringan tubuh yang rusak.
Untuk pengobatan muskuloskeletal, terapi ultrasound bekerja dengan tiga cara:
  • Mempercepat proses penyembuhan dengan memperlancar aliran darah di bagian tubuh yang mengalami gangguan.
  • Menyembuhkan peradangan dan edema (penimbunan cairan), sehingga dapat mengurangi rasa sakit.
  • Memperlunak jaringan luka
Terapi ultrasound juga dapat digunakan untuk:
  • Menghancurkan timbunan zat asing di dalam tubuh, seperti timbunan kalkulus, mis. batu ginjal dan batu empedu; ketika telah dipecahkan menjadi bagian-bagian yang lebih kecil, dapat dikeluarkan dari tubuh dengan aman dan mudah
  • Meningkatkan proses penyerapan dan keberhasilan obat di bagian tubuh tertentu, mis. memastikan bahwa obat kemoterapi mengenai sel kanker otak yang tepat
  • Menghilangkan timbunan kotoran ketika tindakan pembersihan gigi
  • Membantu sedot lemak, mis. sedot lemak dengan bantuan ultrasound
  • Membantu dalam skleroterapi atau perawatan laser endovenous, yang dapat digunakan sebagai metode penghilangan varises non-bedah
  • Memicu agar gigi atau tulang dapat tumbuh kembali (hanya ketika menggunakan denyut ultrasound intensitas rendah)
  • Menghilangkan penghalang darah di otak (blood-brain barrier) agar obat dapat diserap tubuh dengan baik
  • Bekerja bersama antibiotik untuk menghancurkan bakteri
Untuk mendapatkan manfaat dari terapi ini, ultrasound harus dipancarkan pada kulit dari bagian tubuh yang mengalami kerusakan dengan menggunakan transduser atau alat yang dirancang khusus untuk terapi ini. Saat gelombang suara telah dipancarkan, gelombang tersebut akan diserap oleh jaringan halus tubuh, seperti ligamen, tendon, dan fascia.

Kemungkinan Komplikasi dan Resiko Terapi Ultrasound

Walaupun teknologi ultrasound telah banyak digunakan, namun tetap ada panduan cara penggunaan ultrasound yang aman. Panduan ini bertujuan untuk mencegah risiko tertentu yang dapat terjadi, sekecil apapun kemungkinannya. Risiko tersebut meliputi:
  • Luka bakar akibat terapi ultrasound
  • Pendarahan akibat terapi mekanis
  • Efek biologis yang tidak terlalu berpengaruh namun tidak dapat diperkirakan
Namun, karena terapi ultrasound hanya menggunakan gelombang suara sebagai komponen utama dalam pengobatan, terapi ini tidak memiliki risiko bahaya seperti terapi lainnya seperti bahaya dari terapi radiasi. Selain itu, pasien tidak berisiko terkena kanker, walaupun terapi ultrasound dilakukan berkali-kali dan jumlah gelombang suara yang dikenakan pada pasien bertambah.
Untuk memastikan keamanan dan keselamatan pasien, risiko dan keuntungan dari terapi ultrasound harus dicermati dengan seksama. Sebelum menjalani terapi ultrasound, pasien harus membandingkan keuntungan yang bisa didapatkan dengan risiko yang bisa terjadi. 

Rujukan:
  • American Society of Radiologic Technologists: “Ultrasound.”
  • FDA Consumer Health Information: “Taking a Close Look at Ultrasound.” RadiologyInfo.org: “General Ultrasound Imaging.

Aplikasi Getraan dan gelombang dalam teknologi(sonar)

Apa Itu Sonar


gambar sonar
Untuk kali ini saya akan membahas sedikit mengenai sonar, mungkin anda sumua sudah tau apa itu sonar.Untuk libih sempurna mari kita liat pada gambar disamping,gambar ini adalah contohsonar,dan masih banyak lagi bentuk-bentuk dari sonar lainnya.
 
Munculnya sonar tak bisa dilepas dari rintisan tokoh seperti Daniel Colloden yang pada tahun 1822 menggunakan lonceng bawah air untuk menghitung kecepatan suara di bawah air di Danau Geneva, Swiss. Ini selanjutnya diikuti oleh Lewis Nixon, yg pda tahun 1906 menemukan alat pendengar bertipe sonar pertama untuk mendeteksi puncak gunung es. Peminat terhadap sonar makin meningkat pd era Perang Dunia ke I, yaitu disaat ada kebutuhan untuk bisa mendeteksi kapal selam.

Dalam perkembangan selanjutnya ada nama Paul Langevin yang tahun 1915 menemukan alat sonar pertama untuk mendeteksi kapal selam dengan menggunakan sifat-sifat piezoelektrik kuartz. Meskipun tdk sempat terlibat lebih jauh dalam aktifitas perang, karya Langevin berpengaruh besar dlm desain sonar.

Sonar (Singkatan dari bahasa Inggris: sound navigation & ranging), merupakan istilah Amerika yg pertama kali digunakan semasa Perang Dunia, yg berarti penjarakan & navigasi suara, adalah sebuah teknik yg memakai penjalaran suara dalam air untuk navigasi atau mendeteksi kendaraan air lainnya. Sementara itu, Inggris punya sebutan nama lain untk sebuah sonar, yaitu: ASDIC (Anti-Submarine Detection Investigation Committee).

Sonar merupakan sistem yang menggunakan gelombang suara bawah air yang dipancarkan dan dipantulkan untuk mendeteksi dan menetapkan lokasi obyek di bawah laut atau untuk mengukur jarak bawah laut. Hingga saat ini sonar telah luas digunakan untk mendeteksi kapal selam & ranjau, mendeteksi kedalaman, penangkapan ikan komersial, keselamatan penyelaman, &komunikasi di laut.

Cara kerja perlengkapan sonar adalah dengan mengirim gelombang suara bawah permukaan dan kemudian menunggu untuk gelombang pantulan (echo). Data suara/gelombang dipancarkan kembali keoperator melalui pengeras suara atau ditayangkan pada monitor.

Pada tahun 1918 Inggris dan AS membuat sebuah sistem aktif, yg sinyal sonar aktif dikirim & diterima kembali. Misalnya saja untk mengetahui jarak suatu obyek, petugas sonar mengukur waktu yang diperlukan oleh sinyal sejak dipancarkan hingga diterima kembali. Karena tidak ada sinyal yg dikirim pd sistem pasif, alat ini hanya untuk mendengarkan. Pd sistem pasif maju, mempunyai bank data sonik (sumber bunyi) yg besar. Sistem komputer menggunakan bank data tadi untk mengenali kelas kapal, juga aksinya (kecepatan / senjata yg ditembakkan). 805, konfigurasinya terdiri atas peralatan-peralatan bawah air, kabel dan perlengkapan berbasis di pantai. 
Sebuah unit peralatan bawah air masih memiliki sebuah unit elektronik pengirim sonar dan sebuah transducer omni-directional. Kabel yang dipergunakan memiliki serap optik untuk kebutuhan komunikasi dan konduktor tembaga untuk kebutuhan penyaluran power yang menghubungkan unit peralatan bawah dengan peralatan lainnya yang berada di daerah pantai. Kabel yang khusus untuk digunakan di lingkungan laut ada yang panjangnya mencapai 4000 meter. Selanjutnya peralatan yang berada di daerah pantai teratas unit peralatan layer monitor pengontrol power (listrik) dan panel monitor berwarna. Sonar kemudian dioperasikan dengan menggunakan sebuah tarckball yang memiliki 3 switches dengan menu control terdapat pada layer.

Frekuensi yang digunakan oleh sonar berada pada daerah yg ultrasonic, yaitu di atas 20.000 hertz. Krena frekunsi tersebut tidak dapat didengar dan panjang gelombang pada daerah ultrasonic pada daerah ultrasonic sangat kecil sehingga difraksi yang terjadi juga semakin kecil, & gelombang tdk akan menyebar. Kecil panjang gelombang yg digunakan, juga dapat digunakan untuk mendeteksi benda-benda yg kecil pula.

Ultrasonografi

Ultrasonografi medis (sonografi
adalah sebuah teknik diagnostik pencitraan menggunakan suara ultra yang digunakan untuk mencitrakan organ internal dan otot, ukuran mereka, struktur, dan luka patologi, membuat teknik ini berguna untuk memeriksa organ. Sonografi obstetrik biasa digunakan ketika masa kehamilan.
Pilihan frekuensi menentukan resolusi gambar dan penembusan ke dalam tubuh pasien. Diagnostik sonografi umumnya beroperasi pada frekuensi dari 2 sampai 13 megahertz.
Sedangkan dalam fisika istilah "suara ultra" termasuk ke seluruh energi akustik dengan sebuah frekuensi di atas pendengaran manusia (20.000 Hertz), penggunaan umumnya dalam penggambaran medis melibatkan sekelompok frekuensi yang ratusan kali lebih tinggi.

Kegunaan

Sonograf ini menunjukkan citra kepala sebuah janin dalam kandungan.
Ultrasonografi atau yang lebih dikenal dengan singkatan USG digunakan luas dalam medis. Pelaksanaan prosedur diagnosis atau terapi dapat dilakukan dengan bantuan ultrasonografi (misalnya untuk biopsi atau pengeluaran cairan). Biasanya menggunakan probe yang digenggam yang diletakkan di atas pasien dan digerakkan: gel berair memastikan penyerasian antara pasien dan probe.
Dalam kasus kehamilan, Ultrasonografi (USG) digunakan oleh dokter spesialis kandungan (DSOG) untuk memperkirakan usia kandungan dan memperkirakan hari persalinan. Dalam dunia kedokteran secara luas, alat USG (ultrasonografi) digunakan sebagai alat bantu untuk melakukan diagnosa atas bagian tubuh yang terbangun dari cairan.
Ultrasonografi medis digunakan dalam:
USG tidak dapat digunakan untuk memantau lambung atau usus, karena banyak mengandung gas, sehingga pantulan USG akan buyar. Di Laboratorium Klinik Bebas yang tidak berada di Rumah Sakit, selain USG Kandungan dan USG Jantung (Echo), biasanya USG dibagi menjadi USG untuk:
  • Seluruh Abdomen
    • Upper Abdomen
      • Thyroid^
      • Payudara^
      • Liver/Hati^
      • Limpa
      • Pankreas
    • Lower Abdomen
      • Ginjal^
      • Kandung Kemih
      • Prostat^
Yang bertanda '^' dapat diperiksa terpisah, tetapi memeriksa Upper Abdomen saja atau Lower Abdomen saja hanya lebih mahal sedikit daripada memeriksa terpisah dan memeriksa Upper Abdomen dan Lower Abdomen sekaligus lebih murah daripada memeriksa sendiri-sendiri, oleh karena itu jika biaya tidak begitu menjadi masalah, maka lebih baik bagi mereka yang telah berusia 50 tahun atau mereka yang berusia di atas 40 tahun, tetapi menderita Diabetes, sebaiknya memeriksakan sekaligus Upper Abdomen dan Lower Abdomen, karena beberapa penyakit belum muncul gejalanya, jika belum parah, misalnya Tumor Payudara, Batu Empedu, Batu Pankreas, Pelemakan Hati, Batu Ginjal, Batu Kandung Kemih, Pembesaran Prostat.

PENDENGARAN PADA HEWAN

PENDENGARAN PADA HEWAN


Frekuensi Suara Yang Bisa Didengar Binatang

Frekuensi suara yang bisa didengar oleh binatang sebenarnya adalah bermacam-macam tergantung dari jenis binatang itu sendiri. Ada yang mendekati dengan batas frekuensi yang bisa didengar oleh manusia dan ada juga yang jauh diatas frekuensi pendengaran manusia. Berdasarkan range frekuensi, gelombang suara dapat dibedakan menjadi 3 (tiga) macam yaitu :
  1. Infrasonic (1 Hz sd 20 Hz)
  2. Acoustic (20 Hz sd 20.000 Hz)
  3. Ultrasonic ( > 20.000 H)


Berikut beberapa contoh hewan dengan batas frekuensi yang bisa didengarnya :

1. Frekuensi Yang Bisa Didengar Kelelawar
Kelelawar merupakan hewan yang bisa terbang dalam kegelapan. Mereka tidak menggunakan mata untuk melihat dalam gelap melainkan dengan menggunakan suara dengan frekuensi tinggi atau yang lebih dikenal sebagai gelombang ultrasonic. Ketika terbang kelelawar memancarkan gelombang ultrasonic yang kemudian gelombang tersebut akan diterima kembali oleh kelelawar setelah dipantulkan kembali oleh benda atau dinding yang berada dihadapannya. Dengan merasakan lamanya jeda waktu antara pengiriman gelombang dengan penerimaan maka kelelawar dapat menentukan seberapa jauh jarak tubuhnya dengan benda tersebut, itu sebabnya mereka tidak akan menabrak dinding atau benda dihadapan mereka walaupun dalam keadaan gelap sekalipun. Teori ini sekarang sudah dimanfaatkan oleh manusia untuk mengukur jarak suatu benda, seperti pada pengukuran jarak kedalaman laut dan pendeteksi dinding penghalang pada aplikasi robot. Batas frekuensi yang bisa didengar oleh kelelawar adalah 3.000 HZ sd 120.000 Hz, dimana frekuensi ini jauh diatas frekuensi suara yang bisa didengar oleh manusia yakni 20 Hz sd 20.000 Hz.

2. Frekuensi Yang Bisa Didengar Kucing
Kucing merupakan binatang karnivora yang sering dijadikan sebagai binatang peliharaan. Binatang yang satu ini juga bisa mendengar suara dengan frekuensi diatas pendengaran manusia yaitu 100 Hz sd 60.000 Hz.
3. Frekuensi Yang Bisa Didengar Gajah
Gajah merupakan binatang herbivora yang berutubuh besar dan bisa mendengarkan suara dengan frekuensi infrasonic atau suara dengan frekuensi dibawah frekuensi pendengaran manusia. Batas frekuensi yang bisa didengar oleh gajah adalah 1 Hz sd 20.000 Hz.
4. Frekuensi Yang Bisa Didengar Tikus
Tikus merupakan salah satu binatang yang banyak merugikan dibandingkan menguntungkan manusia. Hewan ini disimbolkan untuk para koruptor yang kerjaannya suka mencuri hak orang lain. Batas frekuensi yang bisa didengar oleh tikus adalah 1.000 Hz sd 100.000 Hz. Dengan memanfaatkan gelombang ultrasonic kita dapat mengusir binatang ini dari rumah kita. Berikut rangkaian pengusir tikus

5. Frekuensi Yang Bisa Didengar Anjing
Anjing merupakan binatang yang sering digunakan sebagai penjaga keamanan dan sebagai pelacak jejak karena mempunyai penciuman yang sangat tajam. Hewan ini juga bisa mendengarkan suara dengan frekuensi di atas frekuensi pendengaran manusia. Anjing bisa mendengar suara dengan frekuensi hingga 40.000 Hz.

6. Frekuensi Yang Bisa Didengar Lumba-lumba
Lumba-lumba merupakan binatang yang banyak disenangi kebanyakan orang dikarenakan mereka sangat pintar dan bisa bersahabat dengan manusia dibanding dengan binatang air lainnya. Lumba-lumba bisa mendengar suara dengan frekuensi hingga 100.000 Hz, dan mereka menggunakan gelombang ultrasonic sebagai media komunikasi antara satu dengan lainnya.

7. Frekuensi Yang Bisa Didengar Belalang
Binatang satu ini merupakan biantang yang sering saya kejar-kejar di sawah pada waktu saya masih anak-anak. Karena memang waktu kecil saya banyak menghabiskan keseharian saya dengan aktivitas alam. Binatang ini juga ternyata bisa mendengarkan suara dengan frekuensi diatas frekuensi pendengan manusia yaitu hingga 50.000 Hz.

Mekanisme pendengaran manusia

Mekanisme pendengaran manusia


Bagaimanakah kita dapat mendengar suatu bunyi?

Kita dapat mendengar suatu bunyi pada dasarnya dengan urutan sebagaimana diperlihatkan pada gambar berikut ini.
Jelaskan Mekanisme Proses Mendengar pada Manusia?
Proses perjalanan bunyi

Mekanisme proses mendengar sesuai gambar di atas adalah sebagai berikut!1) Gelombang bunyi diterima daun telinga.

2) Gelombang bunyi disalurkan masuk oleh liang telinga.

3) Gelombang bunyi menggetarkan gendang telinga.

4) Getaran tersebut diteruskan oleh tulang-tulang pendengaran (osikel).

5) Getaran diteruskan ke tingkat jorong dan menggetarkan cairan limfe di dalam kokhlea.

6) Getaran cairan limfe di dalam kokhlea menggerakkan sel reseptor organ korti, yang menghasilkan impuls untuk dihantarkan oleh saraf pendengar ke otak untuk diartikan.

7) Getaran cairan limfe juga menggerakkan tingkap bulat bergerak keluar masuk untuk mengatur tekanan udara di dalam agar seimbang dengan tekanan di luar.
Jelaskan Mekanisme Proses Mendengar pada Manusia?
Bagan: Mekanisme Proses Mendengar pada Manusia

Bunyi yang dapat didengar oleh manusia adalah bila bunyi tersebut mempunyai frekuensi antara 20 - 20 000 getaran/ detik (Hz)

Pembentukan Bayangan pada Cermin

A. Pembentukan Bayangan Pada Cermin Datar Proses pembentukan bayangan pada cermin datar menggunakan hukum pemantulan cahaya. Untuk memper...